UNCLASSIFIED

ap 297 436

Repraduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formnulated, furnished, or in any way
supplied the said drawings, specifications, or other
data 1s not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



?

. —
o p

297456

&~ -

. -

carachen sy ASTIA
A AD No.

———

297 456

63-2-5

-,
.

TECHNICAL L
MEMORANDUM

{TM SERIES)

i et

: . |

™-505 :

UGN |

COPY NUMBER oo e
ASSIGNED TO o o oo

Charles E. Clark

24 June 1960

Permission o quote from this document or 1o repl

duce it. wholly or in part. Should be obtained \ LN

1 g N Ny i g g . N ationt o ’4‘\ \

advance from the System Development “"”"'r"“""\ﬁ-‘_‘fffj‘i\;:;g [
\j\.)'—--‘ ~ ‘k\S\A



™™=505
6-24-60
-l-

IMPORTANCE 8/MPLING IN MONTE CARLO ANALYSES

ABSTRACT

Importance sampling is described as used in Monte Carlo analyses.
An intuitive Justification of the procedure is developed through a
non-mathematical consideration of the fundamental random processes in-
volved., The sampling procedure and its efficiency are illustrated by

numerical examples,

1. Introduction. The author has consulted with operations ana-
lysts concerning the statis'tical problems of Monte Carlo sampling. In-
svitably importance sampling is suggested, and this procedure disturbs
the analyst. The difficulty 4s not simply that importance sampling 1is
not understood, but that superficially it appears absurd, For example,
if s Monte Carlo analysis is to evaluate the effectiveness of a weapon
one of vhose parameters is a reliability coefficient known to be dbetween
.50 and .75, the analyst might be told to carry out the simulation using
«25 for the reliability coefficient. Buch & proposal can be puzzling,
and can generate resistance that is not easily overcome.

The limited understending of importance sampling is unfortunate.
The technique is easy to employ, at least in its simplest form. It can

be highly efficient. When understood, it is a simple, natural procedure
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which docs not require professional ability in statistics, The follow-
ing exposition was written for the author's clients. The discussion

is intended to be an elementary presentation of fundumental statistical
ideas which should be familiar to an operations analyst interested in
Monte Carlo.

This paper is an expository, largely non-technical discussion of
statistical sampling problems that arise in Monte Carlo anslyses. Ex-
cept for the appendices, no statistical knowledge is presumed beyond
recognition of the nature of a probability distribution, Techpiqugs
are not elaborated. In relatively simple Monte Carlo analyses the pro-
zedures discusced cen be enployed adequately by the non-mathematician,
In the case of un elaborate Monte Carlo, the ideas of this poper should
form the basis for coordination between the operations analysts and the
mathematical statistician.

The paper starts with an informal statement of what ig meant by
a Monte Carlo unalysis. There follows a digression on stratified
sampling; this digression will bring to light some important elements in
the Monte Carlo analysis. Finally the discussion of importance sampling
in Monte Carlo statistical analysis is presented through simple numerical
illustrations. Mathematical derivations are placed in appendices.

2, Monte Carlo. This section indicates what is meant by a Monte
Carlo analysis. The discussion introduces a simple exnmple which will
be used later as a numerical illustration.

Suppose thatla machine starts at time zero and runs until the time

of fajlure x. The time x is random with probability density A\ exp{- Ax),
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0 € x <o, At the time of failure the machine must be scrapped with
probability p, 0 < p <1, but with probability ¢ = 1 - p the machine
is repaired. If repaired, the machine runs from time x to x + x'

with x' distributed as x. Agein the machine survives with probability
Q, and in case of survival the third failure occurs at time x + x' + x"
with x" distributed as x. The process terminates when the machine is
scrapped.

Suppose that we wish to know the probability that the machine will
survive until time X (there may be failures before time X, but each of
these failures is repaired). This probability can be computed analyti-
cally, and this computation appears below in Appendix B. Alternatively
one could use the following analysis. One would draw a random number
from the exponential distribution with probability density A exp(- Ax),
and this number would simulate the time to the first failure., Another
random number (uniformly distributed) would determine whether the machine
could be repaired. If a repair is effected, a eeeonq generation from the
exponential distribution would determine the time between the first and
second failures. It is obvious how the similation would continue until
the machine would be scrapped. If such a process were carried out several
times, the fraction of times that the machine survived to time X would be
used as an estimate of the desired probability.

If one's interest vere in this problem per se, the analytic solu-
tion 18 much to be preferred to the statistical sampling procedure. How-

ever laoter in the paper we shall consider a Monte Carlo analysis of this
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problem. The fact that the nroblem can be handled analytically will
permit evaluations of the Monte Carlo analysis that would be impossi-
ble in case of a problem appropriate for Monte Carlo analysis; typically
a Monte Carlo analysis is used only when en analytic solution is not
obtainable. In this paper, somewhat incorrectly, an "analytic" pro-
cedure is one that does not involve statistical sampling.

The statistical sampling procedure as described above is based upon
a model whose random elements are given analytically. This distinguishes
the problem from a typical survey statistics problem. If one were to
estimate the tobacco consumption per capita from a sample, one might cone
sider the consumption of an individual to be a random variable. But in
that case, the distribution of the random variable is unknown. One could
not replace a survey of people by some desk procedure of similating people
and designating their consumptions by numbers read from a table. However,
regardless of whether the sample data are obtained from a desk simlation
or a field survey, the subsequent mathematical analysis of the sample
data could be the same.

Some writers would distinguish between the machine-failure and
tobacco-consumption problems by saying that the first can be solved by a
Monte Carlo analysis, the term Monte Carlo indicating that one kmows ex-
plicitly the distributions of all the random elements in the probvlem. 1Im
this sense the term Monte Carlo signifies that one could simulate the
random process by a desk calculation which uses tables of random mumbers

L4

or by a computer program vhich generates random numbers., With this
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definition Monts Carlo does not require any distinctive mathematical
analysis. The techniques of analysis were in use before the term Monte
Carlo was employed. The problems to be considered in this paper are Monte
Carlo problems in the sense of the above definition. The objective of the
paper could be stated as that of efficiency in Monte Corlo analyses. We
shall retain this definition at present, but an alternative definition will
appear belov. ) .

Monte Carlo analysis, as so defined, is almost a general, effective
procedure which enables one to solve many problems too complex for mathe-
matical analysis. But the;e i8 one unfortunate fact. Such Monte Carlo
annlysis is costly. In one problem it required a high-speed computer
to run 1% hours to obtain a single sample value. At least 20 runs vere
required for even a small sample, and results were degired for hundreds
of sets of model parameters,

There are ways to reduce the cost of such Monte Carlo analyses.
Computer capabilities can be increased, and judicious adaptation of models
can reduce costs. But & much easier way to reduce costs is through the
employment of efficient sampling techniques. ‘The nature and efficacy of
importance sampling, one of these techniques, is the subject of this paper.

In importance sampling one considers a statistical sampling problem
of the type designated above as a Monte Carlo problem. However, one does
not carry out the sampling in the manner suggested by the problem. Rather
a new random process is introduced in place of the original. The nature

of this substitution will come to light in later sections of the paper. At

present we merely remark that some writers reserve the term Monte Carlo for
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a method of analysis in which one creates a random variable vhose
expected value is the solution of a given problem. This random vari-
able is artificial with respect to the given problem. In the machine-
failure problem one is concerned with the random variable vhich is 1 if
a machine is scrapped prior to time X, and which is O if the machine
survives until time X (the expected value of this random variable is the
probability that a machine is scrapped prior to time X.) This random
variable is given in the statement of the problem, and it is not created
by the mathematician during the course of the analysis. However, in the
solution constructed below by a Monte Carlo analysis, this random vari-
able is not used. Rather the mathematicilan creates another random
variable, whose expected value is the same as that of the given random
variable, but whose expected value is cheaper to obtain by statistical
sampling.

3« Stratified Sempling. The problem of section 2 could be analysed
by sirulating the histories of many machines and computing statistics of
the outcomes. The statisticien would say that data were obtained by
simple random sampling. But in costly statistical analyses it is usually
poseible to replace simple random sampling by some more efficient pro-
cedure. BRefore describing such a procedure for use in Monte Carlo
analyees, we shall examine some features of stratified sampling. This
digression will illustrate in simple form the basic idea to be employed
in importance sampling.

As a hypothetical illustrative example we suppose that a hotel wishes

to estimate the mean annual expenditures by its guests in barber shops and
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beuuty parlors. It ise known that the expenditures by women differ more
widely than expenditures by men. Many men get a $2 haircut every 2
veeks at an annual cost of roughly $50; expenditures of as much as $100
or as little as $25 are found occasionally. Expenditures by women can
vary from nothing to over $500. The mean expenditure for women is harder
to estimate than the mean for men.

We assume that 80% of the hotel guests are men. Suppose that a
sample of size 15 is to be taken (we use an absurdly small sample size
to simplify the exposition.) If simple random sampling were employed,
we would expect the sample to consist of 12 men (80% of 15) and 3 women.
However, one might decide to sample 5 men and 10 women. Suppose the

expenditures of the members of such a sample turned out to be in dollars:

Men: %0, %0, 50, 30, 100

Women: 0, 50, 100, 100, 200, 200, 200, 300, 500, 800.

It 1s intuitively clear that such data will lead to a more accurate esti-
mate of the over-all average than would the expenditures of 12 men and 3
women. )

To analyse these data ve calculate M and W, the means of the 5 male
expenditures and the 10 female expenditures, respectively. The results

are

ﬂ-60, Q-?hS.
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These umeans emphiasize the foct thoet stratified swipling ie more
advantajecous than simple random sompling in the prescnt situation. We
con observe that 30§ of the women have expenditures greater than the
mean W. This reflects the fact that a minority of the women have an
important influence on the meon W end on the mean when both se:ics are
pooled into a single distribution. It 1s likely that the ectimates o
be made would be more accurate if an even greater fraction of the sample
consisted of women. However the optimum fraction 1s not relevant to the
following discussion*.

We return to the problem of estimating the mean expenditure for all
persons, male and fenale. If a simple random semple of size 15 had tzen
drawn, one would civide the sum of the 15 data by 15. Put this can not
be done in the present instance becouse we have distorted the natural,
simple random su: vling procedure. lHowever the analysis in the face of
this distortion is obvious. Since 80% of the puests are men, we compute
the followin; weiihted mean of M and W, and we obtain an estimited mcan

expenditure of all hotel guests to be

*The dota sursest that the sample of women should be rouphly 2.7 times
as large ac the sample of men., This ratin is obtained from (.2)(43.20)
/(.8)(17.39) 4in which ,2 nnd .3 are the fractions of women and men
respectively in the population, end 53,20 and 17.89 are empirical esti-
mates of the rtuandard deviatlons of the expenditures for women and men,
respectively. A Justification of this result is beyond the scope of
this paper. Discussinns of this analysis appear in (1}, (2], (3], nnd
other discuscions of stratified sampling.
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X = M+ .oF
= (.8)(60) + (.2)(2k3) = 97,

We could estimate the aampliﬁg error in this estimate. We shall not
do so because the error analysis is not needed for our purposes,

We turn next to e cruder and more cumbersome analysis of the data
given above. This alternative analysis is less appealing in the barber-
beauty shop problem, However, interesting analogies with Monte Carlo
analysis will appear.

Let us suppose that the sample was taken among the hotel guests
registercd at a specific time (we ignore the fact that the statistical
properties of these guests may not eccurately reflect the statistical
properties of all guests over a period of time.) Let us suppose that when
the sample was drawn, there were 80 men and 20 women registered at the
hotel. If simple random sampling had been employed, 15 of the 100 guests,
without consideration of sex, would have been selected in such a manner
that each guest had the probability .15 of being included in the sample.
Thus a random process 1s visualized which would select 15 guests. Before
the process would be implemented, the particular 15 selected would be un-
certain, but each of the 100 guests would have the probability .15 of being
selected in the sample.

This simple random sampling process was not erployed. Rather the
natural process was distorted, Whereas any man Mi would have the proba-

bility
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p(Mi) = .15

-

of being included in a simple random sample, the probability was dis-

torted to
p (M) = 5/80 = ,0625

under the distorted sampling procedure which selected % of the 80 male
guests. For sny individual woman wi the probability of being included
in a simple random sample 1is

p(wi) - 0151

and the probability of being included in a sample drawn by the distorted

process is

p'(wi) = 10/20 = .5,

Consider a particular man who wvas selected in the sample that was
drawn. To be specific suppose that this man is the one wvith expenditure
100. We shall designate him by Mmo' For analytic purposes to be re-

vealed below, we compute for this man the weight

p(M, o)

V(Mmo) - m - .—6%225 = 2,4,

100

The interpretation of this weight is that Mxoo would expect to appear in
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simple random cunples (4f a large number of samples would be drawn) 2.b
times as often ws in sumples drawn under the distorted process. The
distorted process underestimates the importance of Mxoo by the factor
of 2.4, Suppose that the hotel pucsts numbered thousonds, instead of
100, and that there were many duplicates of Mloo' The distorted sampling
process would include ceveral duplicates of Mloo’ but in simple random
sampling one would expcct 2.4 timces as many of such duplicotes. Hence in
the analysis, which will be carried out with use of fornmulas designed for
simple random campling, we will count M, 88 2,4 individuals.

Similarly, consider one of the women drawn into the sample, seay

wéoo' For her we have the welght

If many simple rendom samples would be drawn, this iady would be drawn
into the sample approximately 307 as often as she could expect to be
chosen under the distorted process. Hence the distorted process over-
estimates the importance of the lady by a factor of 1/.3 = 3.33. 1In the
analysis we should downgrade the lady's importance by counting her as .3
of a person.

We return tc the numerical sample., For each person actually drawn
into the sampie we conipute the weight., For each man the weight is 2.4
and for ench woman the weipght is .3. We compute the arithmetic mean of

the 15 numbers in the sample, but we count each man as 2.4 men and each
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womon a8 .3 women., The result is a new estimate of X, called X', com-

puted as

2 . (2.4)(50) #o0et 2,4(200) + (.3)(0) +.0et (.3)(800) _ e
15

Fortunutely X' = X. It is possible to prove that this equality is to
be anticipated. Such a proof is not presented in this peper, except
for a special case found in Appendix B. Proofs are given in references
(4] and [5].

The statistic X is simpler to comprehend than x'. However the
second statistic, or rather the basic ideas involved in the definition
of X', can be employed in a wide variety of situations. In fact we can
state the following general rule, 53 an estimator of a population ex-
pected value we could use a sample mean calculated from the elements of
a simple random sample. Suppose, however, that instead of simple random
sampling we use a sampling procedure in which the population elements
have probabilities (or likelihoods) of inclusion within the sample vhich
are different from the probabilities under simple random sampling. For
each element x of the population from which the sample is drawn, let p(x)
and p*(x) be the probabilities thut the element x would be drawn into the
sample under simple rendom sampling and the alternative sampling process,
respectively. Consider the weight w(x) = p(x)/p*(x). We can still use
the sample mean as an estimator of the population expected value if we
veight each sample value by w(x). This rule will be illustrated and

clarified below.
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4. Importance Sompling in Monte Carlo Analynis. We are ready
to discuss importance sampling. The discussion continues through the
medium of trivial numerical illustrations..

Consider the exponential distribution with probability density
(1) p(x) = .01 exp(- .0lx), 0Sx<e ,

We shall estimate the probability that a sample value from this distri-
bution is less than 1. This probability is easy to obtain analytically,
being 1 - exp(- .01) = .00995 to five decimal places. However we sholl
attack the problen by a Monte Carlo analysis in order to obtain a simple
illustration involving sampling with distorted probability distributions.

Suppose we were to generate a simple random sample from the distri-
bution (1). It would require a large sample to give an accurate estimate
of the probability that a sample value of (1) 1s leés than 1. This is
due to the fact that approximately 1% of the sample values would be less
than 1. Hence hundreds of sample values would be required before we would
know that the fraction is near .0l.

In oxder to obtain a greater proportion of sample values within the
interval of importance, namely (6,1) we shall distort the sampling pro-

cedure. We introduce the distribution with probability density
*
(2) p (x) = exp(- x).

If we sample from this distribution, which superficiully has no relevance
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to the problem, we shall achieve the result that a large fraction of

the sample values will fall within the importance interval (0,1); the
expected fraction is 1 - et . .63, Setting aside momentarily any
question or the sanlty of our operation, let us consider & sample from
the distribution p*(X). Suppose that the firat number generated from
p’(x) were 2, Let us consider the likelihoods of generating this value
2 in both undistorted and distorted sampling: Th; likelihood in case of
undistorted sampling is obtained from (1) as p(2) = .01 exp(- .02)

= .0098020, and the likelihood of drawihg this same value 2 in distorted
sampling is obtained from (2) as p*(2) = ,13534, The ratio of these

likelihoods is

(2) _ 20058020 _ o7
pe) TR

approximately, This implies that in undistorted sampling one can expect
approxi tely 7! as nony cample values in the interval (2, 2 + dx) as
would be obtained under distorted campling. But this means that one can
sample from p*(x), count the number of sample values between 2 and
2 + dx, and multiply by .07; in this way one has an unblased estimate of
the nunber of sample values expected between 2 and 2 + dx under undistorted
sampling (and with the same sample size.) In practice, if 2 were generated
under distorted sampling, one would ascept 2 not as one value but as .07
of a value.

The munbers computed above for x = 2 appear in Table 1. This table

also contains similar results for other values of x. For example, Table 1
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gives the weight 1,412 for the sample value x = 5 This implies that
a sample value within the interval (5, 5 + dx) can be expected 41.2%
more often with undistorted sampling than with distorted sampling.
Several such weights are listed in Table 1. The weights reflect the
obvious fact that small sample values are more likely to be generated
from ﬁ‘(x) but large vaelues are more likely from p(x).

To illustrate the use of weighted sampling we have drawn a random
sample of size 10 from p’(x). The sample values of x ere listed in Table
2. In addition Table 2 gives each of the weights. Since we are estimeting
the probability that x is less than 1, we consider the six values of x in
Table 2 that are less than 1. The value .31 is counted as .0llL of an
observation, .17 as .012 of an ogaervation, etc. The sum of the weights
for the six x's less than 1 is ,096. Hence we count slightly less than
one-tenth of an x less than 1. Since the sample size is 10, we estimate
the probability that x in undistorted sampling will be less than 1 to be
.096/10 = .0096. This estimate 1s close to the true value ,00995.

The procedure has been the following. 1If one were to sample from
p(x), approximately one out of a hundred sample values would be less than
1, and it would require a large sample to produce adequate data for an
estimate of the probability that x is less than 1. We replaced p(x) by
p.(x) vhich generates a large fraction of its sample vnlues less than 1.
We observed that any sample value from ﬁ'(x) can be weighted in such a
vay es to represent a number of sample vaiueé from the distribution of p(x).
This number (weight) is in some cases a small fraction and in other cases

much greater than 1. In the mmerical illustration the distorted sampling



produced 6 of 10 sumple values less than 1, But the weighting procedure
led to counting each of the 6 as a smell fraction of a single value when
the values are to be interpreted as from the distribution of p(x). The
mathematical justification of the weighting procedure and the estimate of
the variance will not be made in this paper’.

5. Ccmmon Distortions of Two or More Random Processes. In Section
L we estimated a parsmeter of the distribution p(x) given by (1). We aid
not generate a sample from this distribution; instead, our sample was from
the distribu’ Hn p’(x) given by (2). Let us observe that p.(x) can be
regarded as a distortion of many distributions. Hence the sample of
Table 2, drawn from p‘(x), can be used for statistical analyses of many
distributions.

To clarify this matter by a numerical illustration, we consider the

distribution with probability density

p'(x) » .02 exp(- .02x), 0Sx<w .

We shall estimate the probability that x, randomly drawn from p'(x), is
less than or equal to 1., Our new problem is identical with the problem

of Sectinn 4 except that p(x) 1s replaced by p'(x).

*see (4] or [5].
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We shall use the same p*(x) as a distortion of p'(x). We proceed
as in Section 4 and obtain Table 3 in place of Table 2. The sum of
the weights in Table 3 for sample values in the interval (0,1) is .190.
Dividing this sum by the sample size 10, we obtain .0190 as the esti-
mate of the probubility that x from p'(x) is less tL.an or equal to 1.
This estimate can be compared with the true value .0198.

The salient feature is that two problems have been solved by use
of the same sample (the first columns of Tables 2 and 3 are identical).
In a serious Monte Carlo most of the computing time is used in obtaining
the sample values from the distorted distribution; typicelly the time
for statistical analysis is relatively insignificant., In our trivial
example this does not happen to be true. But if we should assume that
the major part of the computation consisted in the generation of the first
column in Tables 2 and 3, we would conclude that we have solved two
problenms at the cost essentially of e single analysis.

In general, consider the probability distributions obtained by
assigning a set of values to A in A exp(- Ax). Suppose that for each of
these distributiona we wish to know the probability that x is lecs than or
equal to 1, All these problems can be solved from a single seample drawn
from p*(x). If the number of values agsigned to A 1s large, the savings
obtained from distorted sampling can be tremendous. (However, if the
values of A\ differ greatly among themselves, it 1s possible that a common
distortion of all the disetributions may not be efficient for every A, It
might be necessary to group the values of A into sets, and to handle the

sets separately. Such technicalitiee are beyond the scope of this paper.)
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6. Complex Stcchastic Processes. Ia the exumple of Section L
the efficiency of the Monte Carlo analysis can be greatly increased
by distorted sampling. (We say that a first sampling procedure is k
times as efficient as a second procedure if the sample sizes ':. and N 2’
respectively, required for a given sempling error satisfy N' - “1')
Unfortunately most Monte Carlo analyses are applied to more complex
stochastic processes, and the dramatic savings of Section 4 are mch
harder to obtain. (But the procedure of Section 5 1s no less efficient.)
We shall illustrate this fact by an example of a stochastic process with
two random elements.

Coneider the random veriable y which is distributed uniformly

between 0 and 200. The probability density of y 1is

2(y) _{1/200, 0 Sy <200,
O othervise.

We also use the random variable x with probability density p(x) given

by (1). We assume x and y independently distributed. We shall study

2% X+Yy, and we consider the estimation by Monte Carlo analysis of the
probability that z is less than 1. To obtain vaelues of z in the importent
interval (0,1) we shall distort the distributions of both x and y. The
distortion of p(x) will be the same used above. The distortion of P(y) will

be the probability density

1,05y <4,
P (y) = { 1/309, ¥ <y < 200,
0 otherwise
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Under distorted sampling for y, i.e., with y generated from the
dtetribution with density P, the weight will be P(y)/P (y) = .005
1£ 0 <y <3, and P(y)/P"(y) = 1.995 if 4 <y < 200,

Suppose that one should generate under distorted sampling x = b4
end ¥y = .4, and hence z = .8, Since x and y are independently distri-
buted, the likelihood of this pair of drawings under undistorted sampling
is p(x)P(y), and the likelfhood under distorted sampling is p (x)P (¥).

Hence the weight associsted with the pair of values is

p(:)P(y)

p (x)P*(y)

This is the product of the weights associated with x and y indi-
vidually. For x = .4, the weight is seen in Table 1 to be .0149, and
for y = .4, the weight is given above as .005. Hence the weight associe
ated with z determined as .4 + .4 18 (.0149)(.005) = .0000THS.

Suppose that another pair of drawings gave x = .2 and y = .6, and
hence again z = .8, One easily checks that the weight associated with
the pair of generations is (.0122)(1.995) = .024339. The important aspect
of these results is that both peirs of generations produced the same z,
namely z = .8, but the weights are different, indeed greatly different.
Thus we do not have the monotonicity of the weight as a function of
distance which is apparent in Table 1, Such instability of the weights
can greatly reduce the efficiency of sampling distortions. This fact is

proved in Appendix A.
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Let us retlect on this example. The generation of a value of 2
requires the peneration of an x and a y. Under distorted sempling the
welcht asgocluted with z is the product of the weights associated with
X and y. Suppose that a small volue of x 1s drawn. Since such a small
x is more likely under distorted sampling, w(x) i1s smoll. This tends
to make the weipht of 2z snall. This is fortunate because our objective
under distorted sompling is to get a large number of small values of z;
furthermore, the large number of z's must have small ;eights aecsociated
with them to prevent bias in the statisticel esctimates.

However, this advontageous relation between x and w(x) does not
necessarily produce the same relation betwcen z and w(z). If a small x
is added to a moderately large y, the sum is a z which 1s not small,
However, tlie weight w(z) might te small, being the product of a very
small w(x) and a vilue of w(y) near 1. 1In other words, although there
may be advantageous correlations between x and w(x) as well as between
y and w(y), it is an unfortunate fuct that the resulting correlation
betwecn x + y and w(x)w(y) moy be weak. Thus we do not have the situ-
ation in which wll small values of z have small weights and all large
values of z have larce weightc, The serious implications of this non-
monotonic relation between z and w(z) may not be apparent. I[owever, it
is proved in Appendix A that such instability of the weights can greatly
reduce the efficlency of the distorted sampling.

Consider a complex Monte Carlo. There will be many random vari-

ables xl,...,xn, with n in some cuscs greater than 1,000, Instead of
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the simple relation z = x + y, the outcome of the process z is some
complex function of XiseeerX e In genersl, the greater n, the more
difficult it is to achieve an effective correlation between this function
z and the product of the n weight factors.

In complex Monte Carlo analyses one tries to introduce distorted
sampling of one or more of the random variables in the process. The
objective is to obtain a relatively large amount of data within intervals
of importance. Furthermore these data should have small weights to com-
pensate for their large quantity. The data which fall outside the inter-
vals of importance should be few in number but for that reason have large
welghts. For complex stochastic processes it is often difficult to
determine appropriate ;iatortiono.

7. A Less Unrealistic Illustration. We have described soms aspects
of the statistical sampling problem in Monte Carlo analysis. These dis-
cussions will be summarized through the medium of a numerical example
which is intended to bridge the gap between tormalisﬁ and realistic
application. The discussion is based upon mathematical results which are
deferred to the appendices.

We shall study the process described above in which the running time
between failures of a machine 1is generated from the distribution with
probability density A exp(- Mx), 0 £ x <w; at each time of failure the
machine dies (1s scrapped) with probability p but is repaired with probdba-
bility q = 1 - p; in case of repair an additional running time is generated

from the same exponential distribution; the process continues until death is
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generated at a time of failure. Let us suppose that the basic problem
is to determine the 1% quantile of the distribution of times to death.
In other words we wish a lower tolerance limit for this time to death

so that with 99% confidence one can assume that & machine's life will
exceed this tolerance limit. This 1% quantile, which we shall denote by
X, can be computed enalytically, and this i1s done in Appendix B. For
this reason our example is simpler than most Monte Carlo simulations.
But the simplicity will permit analytic evaluations which are impossible
if e simudation is complex.

The running times and death or survival at each failure could be
sirulated. The histories of several machines could be generated, and the
time of death recorded for each history. From the record of these empiri-
cal times of death, one could estimate the 1% qp;ntile X. Such an esti-
mate would have a large relative error unless the sample size were very
large. This 1s due to the fact that very few of the empirical data would
be within the interval of importance (0,X).

To obtain o greater fractign of the empirical results within the
importence interval (0,X), we can distort the Monte Carlo process. We
can replace the distribution of running times with one having & smaller
expected time between tailures. Furthermore we can increase the proba-
bility of death at each failure. We note that the expected value of the
random variable with probability density A exp(- Ax) 1s 1/A (indeed, the
integral from 0 to » of Ax exp(- Ax) is 1/A.) Hence if the exponential

distribution with pearemeter \ is replaced by the exponential distribution
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with parameter X* with A < k*, the expected time Letween failures is
reduced from 1/\ to 1/x’. In addition we can replace the probebvility
of death p by P > pe

Thus one would hope to employ importance sempling advantageously
by increasing A and p to x* and p*. _But appropriate volues for x* and
p* are not irmediately obvious. Should both or only one of the parameters
be distdrted? How great should the distortions be? Before discussing
how one might resolve these questions, we shall indicate the optimum
distortions in a special case.

To particularize the discussion we shall use A = 1 and p = ﬁ. For
several pairs of values of x’ and q* =1 - p* we have computed the effi-
ciency of the distorted sampling relative to undistorted sampling. These
relative efficiencies appear in Table 4. For example Table 4 gives .00538
for the relative efficiency in case x' = 80 and qf = ,005. This means
tht 1f the sampling error is preassigned, and if a semple of size N is
required under undistorted sampling to keep the error of estimate within
the given limit of error, a sample size of .00535N would be adequate to
attain the same accuracy if the parameters are distorted to X? = 80 and
q* = ,005.

We shall present a mathemntical analysis of this numericol example
in Appendix B, 3But first we conclude the non-mathematical part of the
exposition with some general remarks, In & real problem one ccnnot con-
struct Table 4; if one has enough information to'construct such a table,

it 45 likely that one could solve the problem analytically. Hence one
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must obtain goud distortions of the model parameters partly by guess=-
work. Cuch guessing 1s not a simple matter. Table 4 reveals that some
distortions would be disastrous.

In the face of our 1llustrative problem one might reason as follows.
One cannot get a large fraction of small times to death x merely by
increasing p. This is due to the fact that the first time to fallure
is generated before the probability p comes into play, and the firest time
to death alreudy exceeds X in a large fraction of the histories. Hence
it 1s likely that large sampling savings will require a distortion of A.
It would appeer dangerous to rely solely on a distortion of p.

Without further imnsight into the times thﬁt w&ﬁld be generated
under undistorted sampling, one could not do much better than the follow-
ing. We note that it could be disastrous to use too large values of x’
and p*; indeed, Table 4 indicates th;t A = 1 and qf = ,0005 would be
bad, and we remark, without proof, that similar unfortunate results are
obtained if A" 1s increased beyond the range in Table 4, Hence one might
generate two small samples of histories with small dietortions to say
A = 2 und q* = .4 in one sample and x* = 3 and q’ = .3 in the other.
Estimites of the sampling errors in the two samples could suggest trial
values of the parameters in a third sample. This timid, tentative, prob-
ing procedure has serlous disadvantages. In the first place, the sampling
errors in the estimates of the sampling errors would be'great with small
samples, and the empirical results might mislead one to believe, until
further d:nta were available, that a distortion of A to 2 is better than a

distortion to 3. More seriocusly, the analysis would be completed (with
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cmall savings) before one used parameters anywhere near the optinmum.
In some cases these difficulties cannot be circumvented.

If one can anticipate the results that would be obtained under simple
random sampling, one can act more effectively. Suppose one had reason to
believe that in undistorted sampling the expected value of the time to
death 1s near 2 (it is 2) and that the 1% quantile is near .020 (it is
.020). Then one would know that in undistorted sampling much of the time-
to-death data would be near 2, whereas we would like data near ,020. This
suggests a distortion of the times to death which decreases the ex-
pected value of the distances by a factor of roughly 100. Use of k‘ = 100
would effect such a distortion. Hence for the sake of simplicity one could
leave p undistorted and use - 50 or x* = 25 depending upon how timid
one 1 in the face of the fact that it is wowse, usually, to overestimate
than to underestimate the optimum distortion.

It is possible to devise less elementary procedures for arriving at
a good estimate of an optimum distortion (but to the author's knowledge,
current literature does not indicate any simple, generally applicable
procedure for estimating accurately an optimum distortion.) In general,
elcaentary considerations often cunnot be sharper than the above thoughts.

These thoughts lead to the suggestion that in the hands of a mathe-
matical amateur, importance sampling can produce significant but moderate
savings in computing time. If a lonte Carlo 1is so large that high com-
puting costs are involved, it is likely that prokit would result from
professional mathematical assistance in the design of the statistical sampling

procedures,
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8. Estimates of Expected Values. The entire paper has been limit-
ed L, the discussion of one problem, the estimation of the probability
that the output of a Monte Carlo is less than X, where X is the 1%
quantile or some other quantile with a small percentage. This proba-
bility is an expected value (of the random variable which is 1 if the
time to death is less than X, and is O otherwise.) In general, Monte Carlo
analysis involves the estimation of expected values., However the different
information requirements arise in the estimations of different expected
values. Hence technical procedures vary from problem to problem.

Consider, for example, the numerical example discussed in Section T.
One might wish to know the expected value of the distribution of times to
death. For an estimate of this expected value, the distortions used above
would be bad. The large times of death are more important than the small
ones in the sense that an efficlent sample should contain more large times
than would be generated in simple random sampling. One would in thie case
decrease X and p. We shall not discuss this problem.. Our purpose at this
point 1s to warn the reader not to assume that all Monte Carlo statistical
analysis are completely similar in details to the illustrations used in

this paper.



-f

™-205
6-24-60
-27-

APPENDIX A

In Section 6 concerned with complex stochastic processes, we con-
sidered a random process with two random elements x and y. The output
of the process z = X + y was such that different pairs of x and y could
produce the same value of z. In addition, under the distorted sampling
employed, the weights assoclated with the different pairs could be
different. lence for fixed z the weights vary. It was stated that this
variability of the weights can greatly reduce the efficiency of the dis-
torted sampling. This result will follow from the sampling error formula
derived in Appendix A.

We have a random process, and we wish to estimate the probability
that the outcome of the process is within some interval I; in the problems
considered in this paper the intervel I was in the form (0,X). A sample
is drawn with distorted distributions, and the empirical data consist of
a cequence of "distorted" outputs x:, i=1,...,N, and the corresponding
weights w,; the outputs are sample values of a random varisble. The

estimate of the probability that the output (in undistorted sampling) is

within I is
n
(j) ts= N-l zvi’
1
where we assume that the x; have been so aurranged that x; ie within I

if and only if 4 < n. (The statistic t i1s simply the number of sample
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. values within I divided by the sample size, each sample value being
counted w times.) We shall derive the sampling variance of t.

Let p* be the probability that'an output x* will be within I under
distorted sampling. Then n is a binomially distributed integer with N

and p* as the binomial parameters. Hence the probability of n is
n N-n
N *
(4) P(n) = <n> P a -

The expected value of t is the sum over n of the expected value given n
multiplied by the probebility of n; in symbols

N

(5) E(t) =Zn<tln>r(n>.
0

Let E(wi|x'e1), 1 = 1,2, be the conditional expected value of W under
the condition that the corresponding distorted output xf (i.e., the x’
which has w as its weight) is in I. Since each v, vhich appears in (3)

*
corr: onds to an x within I, we have

E(t|n) = N nE(w]x €I).

This, (4) and (5) give
-1 * 3 N »0 4N-n
E(t) = N E(v|x €I) Z:<D>p Q.
0

Since the sum appearing in this expression is the expected value of n,



wnd since this expected value is Np' from the well-known theory of the

binomial distribution, we obtain

(6) B(t) = p E(vi|x'eI).

In the calculution of E(tZ) we shall encounter
N
: n _N-n
2 (N * *
()
0

which is the expected velue of the square of the binomially distributed
variable n, which is the variance plus the square of the expected value

of n, which is well-known to be

(1) Np q + (Np)Z.

Using this result we calculate that

E(t?) = iE(tzln)P(n)
0
N n .
= n; N-ZE{ le: + 2 lE-sn_i—{T?n wiwd] <§> pﬂnq*“ n

)
. . . . *N-
N2 Z{nz(walx €I) + n(n - 1)[E(v|x eI)lz} (ﬁ) P nq :
4 .
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(because of the independence of w, and vy i 4§ J, we have B(vivh)
= [E(w))? for all n(n - 1)/2 pairs.) We replace n(n - 1) by n® -n

and use (7) to obtain
E(t2) = N 3(E(WR|xeI)Np" + [E(w|x €1)2(Np " + (Np" )2 - Np'])

- ‘,2 - 2
= NOPE(WExeT) + (p - NP )E(v]x"e1)]?

* *
because 1 - q = p .

The vuriance of t is

v(t) = B(t%) - [E(t))?

which with use of (6) reduces to -

v(t) = N‘l[p’E(wzlx'eI) - p'zlﬂ(wlx'eI)]’]

= N Hp V(w]x"eT) + p'q [E(v]x"€1)}?)

because E(w2) = V(w) + [E(w))? and P’ - P" - P'Q*-

This result might lead one to conclude that the sampling error can
be reduced by making p‘ small, i.e., by use of a distortion which produces
a small anount of data within th2 interval of importance I. However such
a conclusion would be fallacious. If p’ vere small, the values of v,

given x’eI, would be large. The increase in E(le’:l) and V(wlx’cl) would
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greatly outweigh the decrease in p’. We shall not pouse to develop
this point. On the other hand, p“ nn& q’ can never exceed 1. Hence
small values of the expected value and veriance of w, given x’eI, vill
produce a small snmpling error. We recall that a large expected number
of distorted times x within I must imply small E(v|xf¢1). This 4in
turn implies that most values of w, given x €I, should be small, and

hence the variance of w, given x’cI, should be small.
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APPENDIX B
Appendix B contains a mathematical analysis of the illustrative
random process used above. The time between failures is distributed

with probability density

(8) A exp(-~ Ax).

At each failure death occurs with probability p, but repair is effected
with probability q = 1 - p. When death occurs the process terminates,
but a repair is followed by another time to failure. We shall compute
the distribution of times to death. DBut most of Appendix B is taken up
with computution of weights and sampling error under importance sampling.
The error to be studled 1s the sampling error in a sample estimate of the
probability that a time to death does not exceed X, where X is any real
number. An interesting vulue for X is the 1% quuntile of the times to
death.

As an auxiliary formula we shall derive the probhbility density of
X= X +oeee 4 X where the x, are independently distributed with proba-

i
bility density (8). We shall prove that this probability density is

(9) P(x|n) = Anxn'le'xx/(nf- 1)! .

For n = 1 the relation is obvious. To verify the general case by in-

duction we write

X
P(x|n) = P(X 4 eo0 + X)) = ‘/\x"’ltn'ze’Xt[l/(n . 2):]Xe-X(x-t)dt
0

which reduces to (9).
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Let n be the number of failures prior to death, and let x be the
time to death. The probability that death occurs at the end of the

at® time between failures is

(10) P(n) = ¢®2p.

The probability density of x given n is (9). Hence the probability

density of x 1is

P(x) =ZP(x|n)P(n)
l

which reduces to

(11) P(x) = pA exp(- pAx).

Thus as stated in Section 2 on Monte Carlo, our illustrative prodblem
can be solved analytically. If A = 1 and p = 4, the 1% quantile of x,

denoted by X, is obtained from

X
f % exp(- #t) at =~ .01,
0

and this gives X = -~ 2 log .99 = ,020 as stated above. However, we have
introduced a Monte Carlo analysis of this prodlem because of the possi-

bility of the following muthematical evaluation of the importance sampling
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procedure. Such a mathematical evaluation would be impossible in case
of a complex Monte Carlo.,
We assume that importance sampling is employed in which A and p*
are distorted to x* and p'. If a distorted history leads to death at
the time of the nth failure, and if xz, {=21,...,n, are the times between

failures, the weight is the product

A exp(-kx:) A exp(-Xx:) q A exp(-kx;)

q
=
x*exp(-k*x:) q x*exp(-x*x:) q*

* LR *
Mexp(-A'x ) P
which we write

(12) w(x*n) = <;%> -1 _% e(x*-).)xu
P

where
* §+ + »
- see
b 4 xl &

is the (distorted) time to death.
Our problem is to estimate the probability (in undistorted sampling)

thut o time to death x is less than or equal to X. If N is the sample

h

size, and if the index i1 indicates.the 1t sample history, our estimator

is

N

-1 » »

N z Cx(xi)v(xi,ni)
i=1
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where cx(t) =1ift<Xand=01if t > X. This means that we count
the histories for vhich x < X and divide by the number of histories

*
in the sample, the history x, being counted as v(x:',ni) histories. We
shall study the random variable

ts= Cx(x')w(x*, n),

because the variance of the sampling statistic is N *v(t) , Where V de-

notes variance.

For the expected value of t we have

E(t) -fZ cx(x')v(x',n)P(x*|n)P(n)dx'.
0 n=1

The factor cx(x’) can be deleted if we integrate over (0,X) rather than
(0,»). Hence using (9), (10), and (12) we odtain

n-1

X » n=-1 » » *n’ . nel
£(t) .f Z (-&) RGN Oy S Pt
0 n1 ¢ b

X »
= px fe-p)’x d-x’
0

= 1 - exp(- pNX).

The reader can check using (11) that B(t) is the probability that x < X.
This Justifies in this particular case the assumption made without proof

that the weighted output of distorted sampling produces en unbiased estimate,
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We obtain E(t%) by replacing w by w* in the initial expression for

BE(t). Reductions similar to those above give

2 *. 2 2,2
E(t3) = Pah -1+ exp XA - 20+ LA .
*, % %2 % % *X
P (g A =29 A\ 422 1

The variance of t is obtained as E(t2) - [E(t)]%, and Tuble 4 is obtained
from the specialization of V(t) with A = 1 and p = 4. Toble 4 is this
V(t) divided by the value of this variance in undistorted sampling, that

* *
is, wvhen A = A and p = p.
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TARIE 1

Weights related to the use of p”(x) ns a distortion of p(x)

x p(x) p(x) | w(x) = p(x)/p (x)
.1 .0095900 . 20LEY .0110
.2 . 0054300 .81873 .0122
.3 .0059700 L1032 .0135
b . 009000 LL70%2 .01k9
.5 0055501 L LO0H3 .016h
.6 .00Y9ho2 Lohl ,0181
o 0056202 sy .0200
.8 .0009203 a3 .0221
o9 «005104 Locy7 L02u
1.0 LOC0 Y SHT8S .0269
2.0 NIRRT L1203k 072k
3.0 SOUTCH, ChaTET .1949
4,0 O L015416 5246
.G Nl I3 0007379 1.l12
IRV L0071 DCT5 3.799
7.0 O3y 00001156 10,22
8.0 NISIAEAS] L0003 5506 27.92
9,0 SO LA S L0001 51 74,56
12.0 SCOCONE, SO B0 £ 199.3




TABLE 2

Sample from p*(x) as a distortion of p(x)

Sample x . R
rom 7" () p(x) P (x) v(x) = p(x)/p (x)
2.71 009733 06654 .1L46
3 009969 T334 Noth
.17 009983 8U37 012
.02 .009998 9802 .010
59 009941 5543 .018
o5k 009946 .5828 017
4.15 .009594 .01576 .609
91 +009909 . 4025 .025
2,72 .009732 .06588 .148
1.15 .009886 3166 .031

ZV(x) - .01k + .012 +
x<1l
= 0096

(10)~* ZV(x) a ,0096

+010 + ,018 + 017 ¢ .025
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TABLE 5

Sample from p*(x) as a distortion of p'(x)

Cample x » *
from o (x) p'(x) P (x) w(x). = p'(x)/p (x)
2.71 01894 0665k .285
31 01988 T334 .028
.17 .01993 L8L37 .02k
.02 01499 0002 .020
<59 .014576 «5OZ .036
54 .01978 5028 .03k
L.15 01841 01576 1.17
.6l L0190k L0245 .0ky
2,72 L0189k L00588 .288
1.15 L0199 . 5166 .062

2 w(x) = 027 + .02h +

>c<i
= ‘190

(10)~* yw(x) = 010

020 + ,0%6 + ,0%4 & ,049




TABLE 4

Sample error in distorted sampling divided by the error in undiciort. d

sampling.
T *
* \\? 5 3 .1 .01 .005 | .01 .0005
1 1.00C00 |.7090L4 |.55679 |.54068 |.64145 {,84770 |1k.58096] 1087.46222
5 .19739 | .13826 |.10571 |.10018 |[.10013 }.10518 | 1.78017 3.33124
10 .09908 | .06796 |.05075 |.04552 |.04653 [.0kT62 06128 0843l
20 L0059 |.03327 |.02370 [.02197 [.02100 .02126 | .02470 .02989
Lo 02770 | .0169% | .01097 |.00988 |.00919 {.00923 | .01027 01143
60 .02167 | .01264 | ,00763 |.00671 {.00610 {.00610 | .00668 00754
o .02032 | ,01167 | .00687 |.00598 |.00540 |.00538 | .00580 .00643
100 .02132 | ,01239 | .00T4¥> | .00652 |.00590 |.00587 | .00622 00695
120 .02409 | .01436 | .00896 |.00798 |.00729 |.00725 .00758 .00807
1o .02854 | .01754 | .01145 |.010%2 |,00949 |.00949 | .00981 .01030
160 03492 | ,02210 | ,01499 |.01368 |.01278 |.01270 |, .01303 .01353
180 .0L361 | .02833 | ;01532 |.01825 |.01718 |.03709 | .01ThL3 .01800
CEC:rs

20 June 1960
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